
Chaining Algorithms and Adjective Extension

by

Karan Raj Singh Grewal

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c© Copyright 2020 by Karan Raj Singh Grewal



Abstract

Chaining Algorithms and Adjective Extension

Karan Raj Singh Grewal

Master of Science

Graduate Department of Computer Science

University of Toronto

2020

A hallmark of natural language is the innovative reuse of existing words. In this thesis, we take

a computational perspective to examine how adjectives extend over time to describe nouns and form

previously unattested adjective-noun pairs. We hypothesize that the underlying mechanisms that govern

how adjective-noun pairs emerge exhibit regularity, and that this phenomenon is not entirely random.

Our approach is based on the idea of chaining that postulates word meaning to extend by linking novel

referents to existing ones that are close in semantic space. We test this proposal by exploring a set of

probabilistic models that learn to infer novel adjective-noun pairs from historical text corpora that span

a period of 150 years. Our findings across three diverse sets of adjectives support a chaining mechanism

sensitive to local semantic neighborhoods, and this finding aligns with what researchers studying language

change in other domains have found. Our work sheds light on the generative cognitive mechanisms that

may underlie word usage extension.
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Chapter 1

Introduction

Natural language expresses a potentially infinite set of ideas with a finite lexicon. Speakers of a lan-

guage often encounter cultural evolution, technological innovations, and other factors, and these changes

ultimately drive languages to adapt under limited cognitive resources [18, 21].

However, languages do not necessarily need to create a new term each time they express a novel

concept or idea, since the size of the vocabulary would grow rapidly, thus placing a strain on learning

a very large lexicon. Instead, one alternative solution to expressing novel concepts is the creative reuse

of existing words. The most common type of word reuse is perhaps the accumulation of word senses

over time, such as how face originally referred to the body part, subsequently extending to surfaces of

inanimate objects, and eventually the action of taking on challenges. In this thesis, we explore word usage

extension and how words appear in novel contexts. One particular domain of word reuse is adjective

extension: the process by which adjectives pair with nouns that they previously did not encounter to form

novel adjective-noun combinations. Adjectives serve the primary function of expressing the attributes of

a wide range of nouns. Indeed, one of the most common uses of adjectives in English is the modification

of nouns, e.g., “strict ADJ person NOUN”. A natural problem faced by speakers is how to pair any adjective

with nouns that it previously did not encounter. For instance, although we may most often use strict

to refer to the behavior of a person, we can also use it to describe the variance in a diet (strict diet) or

the necessity of a criterion (strict criterion) as the adjective strict has extended over time and developed

new senses in order to be applicable to these other nouns since its original use.

An alternative way of looking at adjective extension is to ask which adjectives will become modifiers

for a given noun over time, and Figure 1.1 illustrates this problem. Instead of fixing an adjective

and observing the nouns it will extend to, we fix a noun and are interested in which adjectives that

1



Chapter 1. Introduction 2

Figure 1.1: The emergence of adjectives that co-occur with vegan over the past half century.

previously did not pair with said noun are likely candidates to form a novel adjective-noun combination.

One interesting example that we use as a case study is a subset of the adjectives that have modified vegan

(i.e., “she’s a vegan”) during the last half-century, especially since veganism has been a controversial

subject. Animal rights, ethics, and environmental sustainability all drew little attention from the public

eye during the most part of the twentieth century in comparison to modern day due to lack of public

interest in these topics. However, they gradually gained importance throughout the 1970s, 1980s, and

1990s, and as veganism is central to these topics, the choice of adjectives that English speakers employed

to pair with vegan perhaps reflects this cultural shift. Prior to the 1970s, we observe the novel pairings

strict vegan which has carries a low degree of positive sentiment, but during the period in which we

suspect a change in popular views, we observe the novel pairs healthy vegan and good vegan emerge,

and both these adjectives carry much greater positive sentiment towards veganism1. This example

highlights how (a) adjective-noun pairs can emerge at different times, and (b) social factors influence

which adjectives are likely to pair with nouns such as vegan.

Given these observations, we naturally ask whether the novel contexts in which adjectives and nouns

co-occur over time exhibit any regularity or patterns. In doing so, we also wish to make two clarifying

remarks about the nature of our problem. First, we emphasize that adjective extension in our study

is not equivalent to adjectives accumulating novel senses as modifiers, but instead we focus on which

adjectives and nouns co-occur together over time. For instance, healthy and good both extended to

vegan, but the way in which both adjectives are used as modifiers is not novel, instead the context is, as

it gives rise to previously unseen adjective-noun pairings. Predicting the emergence of novel adjective

senses is an entirely different problem that we do not focus on here, however it may benefit from our

approach since new adjective senses generally imply new contexts as well. Second, while it remains true

that external influences such as technological innovations and changes in social perspectives are possibly

unpredictable and play a large role in the formation of novel adjective-noun pairs, we argue that they

1Source: https://books.google.com/ngrams.

https://books.google.com/ngrams


Chapter 1. Introduction 3

exert a domino effect on adjective usage. As such, we posit that the emergence of the combination

healthy vegan followed by good vegan is not a coincidence, but rather frequent usage of the former by

English speakers led to the latter. In a sense, we aim to show that external factors may guide the change

of the formation of novel adjective-noun pairs, but the cognitive mechanisms that explain most novel

pairs has an underpinning, and that is what we wish to model.

Our basic premise is that the temporal choices of adjectives for a noun are not arbitrary, and given

knowledge of adjective uses in the past, one might be able to predict novel adjective-noun pairs into the

future. In particular, we explore the idea of adjective extension as chaining, a computational mechanism

that we describe in Chapter 2, and hypothesize it can capture the underlying process that generates

new adjective-noun pairings. This idea has already been generalized to other domains of word usage

extension, namely word sense extension [45], the evolution of container names [66], and more recently, the

historical extension of numeral classifiers [14]. We provide a computational model of adjective extension

through chaining in semantic space based primarily on proposals of semantic chaining [20, 29, 45, 66]. In

particular, we test exemplar, prototype, and nearest neighbors models that learn to infer novel adjective-

noun pairs over time and show that chaining is a core component as these models perform much better

than a simple category-size-based prior. We aim to uncover the generative cognitive mechanisms that

underlie word usage extension.

This thesis is structured as follows: in Chapter 2, we discuss past work in psychological, linguistic,

and computational domains that are requisite to modelling adjective extension, such as chaining. In

Chapter 3, we formalize the problem of adjective extension, present a probabilistic model that learns to

infer novel adjective-noun pairs, and go into detail about computational accounts of semantic chaining.

In Chapter 4, we present a historical dataset of adjective uses that spans 150 years and which we use

as an empirical test bed for our predictive models. Finally, in Chapter 6, we reflect on our results,

modelling decisions, and future avenues that may address the shortcomings of our approach.



Chapter 2

Previous Work

In this chapter, we discuss computational work of linguists, psychologists, and cognitive scientists that

this thesis builds on. We discuss the growth of linguistic categories and chaining, as word usage extension

relies heavily on these principles. We also delve into how computational models have assessed the

plausibility of adjective-noun pairs, and finally we touch on some hypotheses regarding rules that govern

how adjectives extend.

2.1 Linguistic growth and chaining

As speakers of natural language, we possess a finite vocabulary and thus have a finite number of adjectives

that we can choose to pair with any given noun. We can therefore interpret adjective extension as

categorizing nouns into one of many adjective categories. For instance, we may categorize a vegan

person as being healthy which naturally permits the phrase healthy vegan to become more regular.

When thinking about adjectives as categories, however, nouns can be assigned to (or classified amongst)

one or more adjectives, and these adjective categories naturally grow (or possibly shrink) over time as

novel adjective-noun pairs emerge.

In fact, categorization applies to much of language change. Linguists such as George Lakoff have

proposed that linguistic categories (such as the set of nouns that an adjective frequently pairs with)

grow over time through semantic chaining, a process in which categories attract new stimuli based on

semantic similarity [7, 12, 20, 29]. This can be thought of as a set of category members that “reach out”

to nearby stimuli in semantic space and grow the category by recruiting one or more nearby stimuli.

Lakoff used the term chaining to describe this growth process as it forms chains that extend outward

from the initial set of category members. This theory has been applied to modelling the extension of

4



Chapter 2. Previous Work 5

word senses [45], container names [66], slang [58], and Chinese numeral classifiers [14] while performing

considerably better than chance which suggests that semantic chaining plays a critical role in growing

linguistic categories.

The way in which the chaining mechanism grows linguistic categories can vary. In Lakoff’s work, he

introduces the idea of centrality, i.e., that each category has a “center”. Later work from other schol-

ars furthers the argument for a center and that linguistic categories grow by radiating outwards from

their respective centers [26], and even suggests a linguistic category may have multiple such centers of

importance [40]. The most notable work along this direction is Eleanor Rosch’s prototype theory [48]

in which she refers to these category centers as prototypes. Rosch argues that the semantic similarity

between category prototypes and novel stimuli directly influences which category novel stimuli are as-

signed to. In later work, she suggests that category prototypes need not be semantic representations for

the categories [49], yet most work on prototype theory makes representational claims.

The prototype-based growth paradigm assumes that categories grow by radiating outwards from

their prototypes, forming a web-like pattern in semantic space. However, this is not the only type

of category growth; chaining can take several forms. Consider, for instance, a growth mechanism in

which one member of the category is chosen at random and its semantic similarity with novel stimuli

determines how those stimuli are categorized. A prototype-based growth process can be imagined as

category members radiating outwards from the specific category prototype around which all stimuli

cluster, whereas this specific growth mechanism would likely be illustrated by trees branching outwards

at almost every node, and thus forming long chains in a somewhat-unorganized manner in semantic

space.

An alternative chaining mechanism that informs how linguistic categories can grow is based on ex-

emplar theory. Rather than assuming a category prototype or center controls the category’s growth

trajectory, the exemplar model takes all category members, termed exemplars, into account when cate-

gorizing novel stimuli. The key difference here is that semantic neighborhood, or semantic neighborhood

density, matters; multiple configurations of category exemplars can yield the same category prototype

and ultimately result in the same categorization decision. However, this is not true of exemplar-based

growth since each exemplar’s semantic similarity to a novel stimulus influences the categorization de-

cision. Robert Nosofsky’s Generalized Context Model (GCM) [37] formalizes exemplar theory and is

perhaps the most well-known version of an exemplar model of categorization. The GCM has generally

outperformed all other psychological models of categorization, including Rosch’s prototype model, and

exemplar accounts of word modelling have been also applied to several aspects of language including pho-

netics, phonology, morphology, word senses, and constructions [6, 17, 44, 46, 53]. Figure 2.1 illustrates
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(a) Exemplar Model (b) Prototype Model

Figure 2.1: The resulting shape of categories when growing using exemplar (left) versus prototype
(right) models. The triangle represents the first exemplar in each category as both categories grew from
just one member. All the novel stimuli (circles) are initially ordered randomly and appear in a sequence
(independent of proximity to either category) for classification. In each of the plots, the grey circles have
not yet been classified whereas all the colored circles have been classified. This simulation shows how
category assignments can differ based on the category growth model.

how the growth of two categories can differ when using the exemplar versus prototype model.

Beyond prototype and exemplar theories, nearest neighbor chaining has also proven effective at



Chapter 2. Previous Work 7

growing linguistic categories. A nearest neighbor approach takes all exemplars of a category and picks

out the one that is closest to a novel stimulus. The semantic similarity between the nearest exemplar

and novel stimulus then determines the growth of a category. This method essentially builds a minimal

spanning tree in semantic space and researchers have shown that this type of chaining best explains how

word senses emerge over time [45]. Similarly, two earlier studies also found nearest neighbor chaining to

best summarize how container names evolve across languages [54, 66].

2.2 Adjective-noun composition

As we’re primarily interested in adjective-noun pairs and their temporal co-occurrences, it’s important

to first consider their acceptability. Not all adjectives in the English lexicon can pair with any noun,

and this is best illustrated by Noam Chomsky’s famous nonsensical phrase colorless green ideas sleep

furiously [8]. For this reason, many researchers have taken a computational approach to investigate

what makes adjective-noun pairs sensible. Note that there’s a stark difference between sensible and

attested: for instance, homosexual vegan is perhaps unattested and it’s likely that most English speakers

have never come across this phrase, but it’s easy to imagine. On the other hand, slippery vegan is also

unattested, but what does it even mean for a vegan to be slippery? This is a nonsensical composition.

In this section, we focus on computational approaches to adjective-noun composition. As speakers

are better than any computational model at determining sensible composition, a simple way to assess

plausibility is by studying human judgments. Interestingly, human judgments correlate strongest with

the lexical frequency of adjective-noun pairs among various corpus-based variables, suggesting lexical

frequency may be the driver of plausibility (or vice-versa) [23]. Similarly, when adjectives are polysemous

or context-sensitive, a probabilistic model can identify the sense of the adjective and this also reflects

what human subjects would intuit its sense to be [22]. Apart from assessing composition based on human

judgments, does there exist a formal mathematical model that can distinguish acceptable adjective-noun

pairs from nonsensical ones? One group of researchers assumed properties of noun objects are strictly

hierarchical and they developed a Bayesian framework that learns to infer sensible compositions while

adhering to ontological constraints [51]. For instance, since vegans can be homosexual but not slippery,

and ice can be slippery but not homosexual, this implies no noun object can possibly be both homosexual

and slippery.

Vector space models of semantics, such as Word2Vec [31], can also provide insight into composition.

One simple method is to measure how similar a query noun is to the prototype for an adjective category

as an assessment of adjective-noun fit. Although this has not explicitly been tried, an analogous approach
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was used to determine how likely noun objects are to perform certain actions, where verbs are treated

as categories and the nouns paired with a given verb are used to estimate the prototype [9, 10, 39].

This approach is almost identical to our prototype model, however one major difference is that we

explore the temporal aspect of adjective-noun pairs rather than holding the time variable fixed. An-

other trend popularized by Marco Baroni has been to treat adjectives as operators that apply to noun

vectors and result in a transformation that should subsequently yield the distributed representation of

the adjective-noun phrase. This general line of work self-identifies as “compositional distributional se-

mantics” since adjectives and nouns are are represented in vector spaces based on their distributional

meaning and composed in various ways. For instance, by treating adjective-noun pairs as single tokens

and estimating their distributional representations within a large corpus of text, least squares regression

is best able to reconstruct the joint context using the individual adjective and noun tokens as compared

with other compositions such as addition, pointwise multiplication, etc. between adjective and noun

representations [13]. The distribution of an adjective-noun phrase can also be successfully modelled

through various linear methods to compose representations of adjectives and nouns; for the most part,

they treat adjectives as linear operators on nouns in a vector space [3, 5, 59], or more specifically as

additive compositional models [67]. Pushing composition even further, one study showed how to model

the distribution of adjective-adjective-noun phrases in a sensible way [60]. Researchers have also evalu-

ated how various compositions align with human judgments [33]. In general, all these aforementioned

approaches use matrix-vector composition and can be leveraged by neural network models to learn more

sensible parses of phrases [56].

One possible argument against these vector space approaches based on distributional semantics is

that humans do not only build mental models of the world regarding which adjective-noun compositions

are sensible from large corpora of text, but also from the visual world. Recent studies have explored the

composition of nouns and adjectives in a visual-linguistic context For example, one study proposed a

cross-modal mapping between visual and word representations where the objective is to learn a function

that assigns adjective labels to visual inputs [24], and more recently other researchers were able to learn

a linear mapping that predicts an adjective descriptor given a visual input based on chaining [34]. Neural

network models extend these works in image caption generation, which generally produces descriptive

captions containing adjectives for a given query image [63]. Of course, one major limiting factor of

these cross-modal approaches is that they may not be appropriate when dealing with relatively abstract,

non-visual adjectives. All the work we are aware of either addresses change in language from a linguistic

view, or presents a computational approach to assessing adjective-noun plausibility. To the best of our

knowledge, there has been no prior work on formulating historical adjective extension as a computational
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problem.

2.3 Changes in adjective use

Scholars have also investigated how the senses of adjectives and general set of nouns that they modify

have changed over time. The most notable work is by linguist Joseph Williams, who proposed groups

of adjectives transfer from one domain to another [62]. For instance, adjectives originally intended

to describe touch perceptions have since extended to describe color (e.g., warm cup −→ warm color).

Similarly, adjectives originally intended to describe color have come to describe sound (e.g., clear blue

−→ clear voice), and vice-versa (e.g., quiet room −→ quiet blue). Williams hypothesized that, in general,

the domain transfer of adjectives follows general rules which he outlined in his paper. As this was a

theoretical study, Williams only considered a select set of adjectives to which his principles apply, and

so whether or not these rules generalize to all adjectives in English is still an open question.

It’s unclear whether chaining plays a role in adjective domain transfer, but evidence from other areas

of language use suggests chaining mechanisms play a big role in other types of transfer. More specifically,

physical actions can turn to metaphors (e.g., to physically grasp an object −→ to mentally grasp an idea)

via chaining [65]. This recent work suggests adjective extension may indeed adhere to the same chaining

principles, and makes our approach a promising research direction.



Chapter 3

Computational Models

In this chapter, we formalize hypotheses about semantic chaining presented over the past few decades

into probabilistic models. These include the exemplar, prototype and k-nearest neighbors models and

they all require some notion of semantics. We also describe a Bayesian framework under which our

probabilistic models operate, including the use of a type-based prior. Lastly, we discuss how to learn

parameters for our models and how we incorporate semantic information that is highly relevant to the

predictive task.

3.1 The computational problem

We cast adjective extension as a temporal categorization problem. Given a noun n∗, our models seek

to predict which adjectives a ∈ A are most appropriate for n∗, where a is drawn from a finite set of

adjectives A that we consider. More formally, we are given two primary sources of information at time

t and would like to predict the posterior probability that a will co-occur with n∗ at time t+ ∆, denoted

henceforth as p(a|n∗)(t+∆). The first source of information is a likelihood p(n∗|a)(t) that reflects (i)

which other nouns paired up with a at time t, given as {n}(t)a , and (ii) n∗’s semantic relationship to

every noun that paired with a at time t. The second is a prior probability p(a)(t) for adjective a and it

tells us how likely a is to be re-used in a novel adjective-noun pairing at time t + ∆. We combine the

type-based prior with the likelihood to obtain the posterior probability of observing adjective a co-occur

10



Chapter 3. Computational Models 11

with n∗ at time t + ∆:

p (a|n∗)(t+∆) ∝ p (n∗|a)
(t)

p (a)
(t)

= p
(
n∗|{n}(t)a

)
p
(
{n}(t)a

)
.

In the above formulation, each adjective a ∈ A is treated as a category and thus described as the

collection of nouns that co-occurred with a at time t. The prior and likelihood are described in more

detail in chapters 3.2 and 3.3.

3.2 Prior distribution

We formulate a prior p(a)(t) that tells us how likely adjective a is to pair with any noun at time t + ∆

in the absence of more specific semantic information. For a given adjective a, its prior probability is

simply the normalized count of the number of unique nouns that it paired up with at time t:

p (a)
(t)

= p
(
{n}(t)a

)
=

∣∣∣{n}(t)a

∣∣∣∑
a′∈A

∣∣∣{n}(t)a′

∣∣∣ .
The rationale behind this choice of prior is as follows: if semantic chaining largely explains the emergence

of novel adjective-noun pairs, then adjectives that have paired with more nouns have a higher a priori

probability of “attracting” a given noun n∗ via linking it to semantically similar nouns which are more

likely to have previously co-occurred with a [1, 28]. This rich-get-richer process is also supported by

work on how semantic networks grow through preferential attachment [57]. In simpler terms, wild is

likely to accumulate more nouns that frenzied as it is used more frequently by English speakers.

This type-based prior serves as our baseline model when making adjective predictions for n∗ at time

t + ∆ and so the posterior probability assumes a uniform likelihood: p (a|n∗)(t+∆)
= p (a)

(t)
. Using

this prior as the baseline effectively assumes that adjective category size is the only factor governing

how adjectives will extend, and ignores all hypotheses about semantic chaining. All chaining models

(discussed in the next section) make use of the type-based prior when computing posterior probabilities.

3.3 Likelihood function

In this section, we describe how to compute the likelihood term p(n∗|a)(t) in our computational frame-

work. Our likelihoods generally assume that classifier choices rely on similarity relationships between
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(a) Exemplar (b) Prototype (c) k-nearest neighbors, k = 3

Figure 3.1: Illustration of the various chaining algorithms used to compute likelihood functions. The
unshaded circle is the stimulus or the probe noun, red circles are nouns that have paired up with
one particular adjective, and blue circles with another (although a noun may pair up with multiple
adjectives).

noun n∗ and other nouns that have paired with adjective a. We formally define the similarity between

n∗ and another noun n at time t as

sim(n∗, n) = exp

(
−d
(
~v

(t)
n∗ , ~v

(t)
n

)2
)

where d (·, ·) is a distance metric [36, 52] and ~v
(t)
n∗ , ~v

(t)
n are semantic representations of nouns n∗ and

n respectively. All semantic representations of nouns are contained in a vector space over which the

metric d (·, ·) is defined. Intuitively, similarity decreases exponentially as a function of distance. We use

Euclidean distance as the metric in all our experiments. Figure 3.1 provides a visual illustration of our

likelihood models.

3.3.1 Exemplar model

Exemplar theory [30] suggests that humans categorize a novel stimulus into one of finitely-many cate-

gories based on its degree of similarity with instances stored in memory. More specifically, for a given

adjective a, the set of nouns that it co-occurred with at time t are its exemplars, and the stronger the

relationship between n∗ with a’s exemplars, the more likely it is that n∗ will pair with a at time t + ∆.

We consider a novel stimulus n∗ and the goal is to obtain the appropriate likelihood p (n∗|a)
(t)

. n∗’s

degree of similarity to each of a’s exemplars n ∈ {n}(t)a determines the extent to which a is applicable

to noun n∗:

1∣∣∣{n}(t)a

∣∣∣
∑

n∈{n}(t)a

sim(n∗, n).

Note that we divide the exemplar sum by the the number of terms we sum over
∣∣∣{n}(t)a

∣∣∣ to control for

category size. Exemplar theory takes semantic neighborhood density into account as nouns that are
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closer in semantic space to n∗ tend to dominate the likelihood.

In different categorization settings, we may want to control how sharply similarity declines as a

function of distances in semantic space. In the psychological literature, the GCM is the most popular

exemplar model as it introduces a kernel parameter h(t) (specific to time t) which controls the steepness

of the similarity function [37]. This gives our exemplar likelihood

p (n∗|a)
(t) ∝ 1

h(t)
∣∣∣{n}(t)a

∣∣∣
∑

n∈{n}(t)a

exp

−d
(
~v

(t)
n∗ , ~v

(t)
n

)2

h(t)


and we can recover the original version of the exemplar model by simply setting h(t) = 1.

In this formulation, we also use h(t) as a normalizing term as this method of computing the likelihood

p (n∗|a)
(t)

is effectively the same as performing kernel density estimation in semantic space [2, 41, 50].

More details about learning the kernel parameter are described in Chapter 3.4.

3.3.2 Prototype model

Prototype theory offers a different view on categorization than exemplar theory. Prototype theory,

motivated mainly by Eleanor Rosch [48] with recent advancements in few-shot learning [55], suggests

each category has a prototype representation which (i) humans associate with the category, and (ii)

is representative of the category’s exemplars. This implies that the strength of association between a

stimulus noun n∗ and adjective a’s prototype representation determines the likelihood probability of n∗

pairing up with a at time t + ∆. Researchers have proposed multiple ways to compute the prototype

~p
(t)
a for adjective a, but we follow a straightforward approach by simply computing the arithmetic mean

of all exemplars n ∈ {n}(t)a in semantic space [47]:

~p(t)
a = E

[
n ∈ {n}(t)a

]
≈ 1∣∣∣{n}(t)a

∣∣∣
∑

n∈{n}(t)a

~v(t)
n .

n∗’s degree of similarity to ~p
(t)
a determines the likelihood probability:

p (n∗|a)
(t) ∝ exp

−d
(
~v

(t)
n∗ , ~p

(t)
a

)2

h(t)


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where we once again fit a kernel parameter h(t) just as in our exemplar likelihood. This formulation

makes use of the same similarity function (with the learned kernel parameter) as the exemplar model.

However, unlike the exemplar model, here the likelihood is based on n∗’s proximity’s to a’s centroid and

therefore doesn’t take semantic neighborhood density into account.

3.3.3 Progenitor model

Theorists have argued as to whether category prototypes change once categories accumulate new ex-

emplars. Some believe that the prototypical representation for a category remains fixed and hence the

growth of the category radiates outwards from ~p
(t0)
a (where t0 is the base time). The progenitor model

is simply a variant of the prototype model where the prototype representations for adjective a remains

“static”, i.e., ~p
(t)
a = ~p

(t0)
a for all t ≥ t0.

3.3.4 k-nearest neighbors model

The basic idea behind distributional semantics is that examples within proximity of each other in seman-

tic space exhibit similar properties [16]. The k-nearest neighbors (k-NN) model builds on this intuition

along with recent work on distance-based representations in neural networks [19, 61]. The probability

of n∗ pairing up with a at time t + ∆ is directly proportional to how many of n∗’s k-nearest nouns

n1, n2, . . . , nk paired with a at time t.

These nearest nouns are chosen based on semantics. Formally, let N (t)
A be the the finite set of nouns

that we consider at time t (further described in Chapter 4.3) and let Si ⊆ N (t)
A \ {n∗} be any k-sized

subset of N (t)
A \ {n∗} indexed by i. Given our choice of semantic space, define

SkNN = arg min
i

∑
n∈Si

d
(
~v

(t)
n∗ , ~v

(t)
n

)

and enumerate the nouns in SkNN as n1, n2, . . . , nk (possibly randomly). Now that we’ve picked the

k-nearest nouns to n∗, the k-NN likelihood in a Bayesian framework is

p (n∗|a)
(t) ∝ 1∣∣∣{n}(t)a

∣∣∣
k∑

j=1

1

[
nj ∈ {n}(t)a

]

where the sum is over the k nouns closest to n∗ in semantic space.

When this likelihood is combined with the prior, the k-NN posterior probability amounts to n∗’s

k-nearest nouns “voting” for which adjective they appeared with at time t. As it’s highly likely that a



Chapter 3. Computational Models 15

proximity noun nj (where j ≤ k) co-occurred with multiple adjectives, it votes multiple times—once for

each of those adjectives. These votes ignore raw corpus co-occurrence counts, and instead are binary

(i.e., type-based). This formulation can be interpreted as a somewhat “hard version” of the exemplar

model as k is a discrete analog of the kernel parameter h(t). We report k = 1 and k = 10 in our

experiments.

3.4 Kernel parameter estimation

We now describe our methodology for learning the kernel parameter h(t) used in both the exemplar

and prototype models. The objective is to learn this kernel parameter using all the knowledge we have

about historical and current adjective-noun pairings and the usage of nouns up to and including time

t. By splitting our attested adjective-noun pairs into those that emerged at time t − ∆ or before and

those that emerged at exactly time t, we optimized precision (predictive accuracy) on the former set

of pairings to predict the latter. This essentially allows us to treat novel pairs at time t as “validation

data”. More specifically, for any noun n, we define the function fn : R → Amn which computes the

the predicted posterior distribution and retrieves the adjective predictions for noun n given a kernel

parameter h(t) ∈ R. Here, mn is the number of adjectives a ∈ A that n first paired with at time t. We

then perform the kernel parameter estimate as

ĥ(t) = arg max
h

∑
n

∣∣∣fn(h) ∩ J (t)
n

∣∣∣∑
n mn

where J (t)
n is the set of mn adjectives that actually form novel adjective-noun pairs with n at time t. In

the language of precision and recall, fn(h) gives the set of retrieved positives for a given kernel value h

and J (t)
n is the set of true positives. The estimated kernel parameter ĥ(t) is then used to predict novel

adjective-noun pairs at time t + ∆ for all nouns. We learned a separate h(t) for each of the exemplar

and prototype likelihoods at time t.

We chose to optimize the precision score as it reflects the extent to which our predictive models

can accurately predict novel adjective-noun pairs. Of course, optimizing any model based on precision

requires access to mn (the number of new adjectives that pair with noun n at time t+∆) and it may seem

odd for a model to know this quantity, but we treat this value as a cutoff. Our predictive models rank-

order all adjectives that previously did not appear with n based on their predicted posterior probability

and the top mn such adjectives are compared to the emergent adjectives that pair with n at time t+ ∆.

Since we are predicting a posterior categorical distribution over adjectives, it’s also worth considering
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metrics to evaluate the shape of the distribution itself, and we later go into more details about these

approaches. These include using a maximum a posteriori estimate of the kernel parameter based on

observed extensions (see Appendix D) as well as both optimizing and evaluating the Jensen-Shannon

divergence between the predicted posterior and empirical distributions (see Appendix C).

3.5 Semantic space

The exemplar, prototype, and k-NN models all rely on some notion of semantics. More specifically, when

estimating the likelihood term p(n∗|a)(t), we require meaningful representations of both n∗ and each

n ∈ {n}(t)a to incorporate semantic similarity into these models. Word2Vec [31], and word embeddings

based on distributional semantics in general, are a straightforward way to represent semantics and

understand the uses of various nouns.

However, we need to account for the fact that our models are sequential and only observe co-

occurrence statistics up to time t when making predictions for novel adjective-noun pairs at the next

time step. Vector space models of distributional semantics are learned based on a word’s co-occurrence

distribution, thus word embeddings that have already “seen” adjective-noun combinations that emerged

after time t are inappropriate for our predictive model as they peek ahead in time. Instead, we turn

to diachronic Word2Vec embeddings [15]: these word embeddings are trained using a skip-gram model

just as Word2Vec, however are time-sensitive. At each time t, the diachronic Word2Vec embedding for

each noun is based solely on its co-occurrence statistics at time t, and all past and future co-occurrences

are ignored. For instance, the uses of certain words such as gay and awesome over 100 years ago have

almost no resemblance to their uses today as they have changed, and diachronic Word2Vec embeddings

capture exactly that. Hence, the predictions made by our predictive models don’t peak ahead at future

adjective-noun pairings and are in a sense zero-shot. We used diachronic Word2Vec embeddings trained

on a corpus of text written at time t when predicting the behavior of nouns with respect to their adjective

pairings at time t + ∆.



Chapter 4

Historical Data of Adjective Use

In this chapter, we describe a large corpus of historical adjective-noun pairings which we used as the

basis for our study. This corpus comprises passages of written English over the past two centuries. We

also describe three different sets of adjectives against which we test our computational models and how

these sets were obtained. All data and code from our analyses are publicly available1.

4.1 The Google books corpus

The Google books corpus [27] contains transcriptions of various pieces of text (mostly books) written

over the past few centuries. Within the entire corpus, the English All (EngAll) corpus accounts for

8.5 × 1011 tokens and roughly 6% of all books ever published in English. The vastness of the EngAll

corpus across various points in time is likely to reflect how written English has changed over the past

few centuries, and since written and spoken language are generally tied together, we suspect this corpus

as a whole is a good approximation of (English) language use over large periods of time. Words in this

corpus are tagged with their part-of-speech (POS) and the year when the book in which they occur

was published, and this is particularly useful as we are interested in adjectives, nouns, and when they

co-occurred. As writers of English have changed their usage over the past few centuries (see Figure 1.1

for an example), we suspect that studying adjective-noun co-occurrences using the Google books corpus,

and more specifically the EngAll corpus, is ideal for testing hypotheses about language change. We

restrict our analysis to books published between 1800 and 2000.

1Code and data are available at https://github.com/karangrewal/adjective-extension.
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4.2 Three adjective sets

In this section, we present three adjective sets A and their historical co-occurrences with nouns. This is

to get a representative view of adjectives and to ensure our hypothesis is agnostic to choice of groups of

adjectives. We evaluated our predictive models against each of these three adjective sets, and these sets

are described in the following subsections.

4.2.1 Frequent adjectives

Our first set contains 200 frequently-used adjectives that cover a broad scope of descriptions. To construct

this set, we first collected pre-trained Word2Vec embeddings2 of all adjectives in WordNet [32]. Note that

these are not diachronic Word2Vec embeddings, and instead reflect the modern use of English. Next,

we performed 20-means clustering to group the adjectives based on semantics. Finally, we sampled

10 adjectives from each cluster based on frequency in the corpus across all times. That means that if

adjective a was grouped into cluster C, it was sampled with probability fa/
∑

a′∈C fa′ where fa is the

raw occurrence frequency of a in the EngAll corpus between 1800 and 2000. For the remainder of this

thesis, we refer to this set of adjectives as Frq-200.

4.2.2 Random adjectives

Frq-200 contains some of the most prominent adjectives in the English lexicon, but to test if our

hypothesis about semantic chaining extends to a more general set of adjectives, we constructed A to

contain 200 random adjectives that also cover a broad scope of descriptions. To construct this set, we

followed the same protocol as with Frq-200 all while replacing frequency-based sampling with random

sampling. That is, for a given cluster of adjectives C, 10 adjectives were chosen via uniform sampling.

We will refer to this set of adjectives as Rand-200. A brief comparison of adjectives in Frq-200 and

Rand-200 is given in Table 4.3 and an exhaustive comparison is provided in Appendix A.

4.2.3 Synaesthetic adjectives

Both Frq-200 and Rand-200 are novel in the sense that we present them as new groupings of adjec-

tives against which to evaluate our predictive models. However, linguists have previously studied specific

adjectives and how they extend over time to describe different objects, such Joseph Williams’ synaes-

thetic adjectives (discussed in Chapter 2.3). These are a pre-defined group of 65 adjectives3 that have

2Available here: https://code.google.com/archive/p/word2vec/.
3Syn-65 actually contains 61 unique adjectives, and we go into detail about this adjective set in Appendix A.

https://code.google.com/archive/p/word2vec/
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historically extended between different sensory domains to describe various objects while exhibiting a

pattern of regularity (e.g., touch to color: warm cup→ warm color). We will refer to this set as Syn-65.

4.3 Nouns

To test our hypothesis about how adjectives behave and extend over time, we needed to pick a relevant

set of nouns which capture almost all the uses of all adjectives in any of our adjective sets. For each

adjective set A described in the last section, we followed a simple protocol to construct a set of relevant

nouns that included (i) the most commonly paired nouns, and (ii) nouns that emerged after the base

time t0 (the base time is discussed in Chapter 5.1), both with respect to A. As all adjective sets are

almost mutually exclusive of each other, our noun sets differ for each A.

Our protocol for constructing a set of nouns for adjective set A at time t, henceforth N (t)
A , is as

follows. First, we picked a base set of nouns by picking ones that co-occurred most frequently with

adjectives in A. That is, we scored each noun n based on its type-based frequency with all adjectives in

A across all time periods: ∑
t

∑
a∈A

1

[
n ∈ {n}(t)a

]
.

Based on this pseudo-metric, we selected the top 5,000 nouns as the base set for A. Next, we deemed

a noun to be emerging if and only if it first co-occurred with any a ∈ A at some time beyond the base

time t0. We picked the top 500 emerging nouns at each time t by ranking nouns that emerged at that

time based on their type-based co-occurrence frequency with adjectives in A. Consequently, N (t)
A grew

as t increased. Letting E(t+∆)
A be the set of top 500 nouns that emerged with respect to A at time t+ ∆,

the growth of our noun set is formally given by the recursive relation

N (t+∆)
A = N (t)

A ∪ E
(t+∆)
A .

Frq-200 Rand-200 Frq-200 Rand-200 Frq-200 Rand-200

Asian Hungarian polite chatty warm chilly
Christian Thai intelligent unorthodox dense watery
American Cornish passionate amiable dry fertile
European Catalan energetic communicative tropical drizzling

Table 4.1: A comparison of some adjectives in Frq-200 and Rand-200 grouped according to the cluster
they were originally drawn from. Notice that the clusters align semantically, however the adjectives in
Frq-200 are more prominent in the English lexicon than those in Rand-200.
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Experiments and Results

Having described our methodology in previous chapters, we now share results from testing our models

against historical data of adjective use. In particular, in this chapter we discuss our experimental

protocols and model performance. We also share results from additional studies that show adjectives

don’t extend randomly, but rather in accordance with the principle of cognitive economy. These results

generally support our chaining hypothesis and suggest semantic chaining plays a significant role in

adjective extension.

5.1 Experiment details

We tested our models and evaluated their predictive accuracy on each of the adjective sets detailed

in Chapter 4.2 using the probabilistic formulation we described earlier. At each point in time t, each

model was tasked with inferring which adjectives a ∈ A would pair with a given noun n∗ at time t + ∆.

We divided our time bins into decades, i.e., ∆ = 10 years, and hence made predictions regarding how

adjectives would extend in future decades. Although the EngAll corpus contains word counts between

1800 and 2000, we chose our base decade to be t0 = 1840s. Note that despite this choice of t0, we still

count adjective-noun pairings as far back as 1800 and this gives all pairings between 1800 and the end

of decade t, inclusive. Emergent adjective-noun pairs in the 1860s were the first against which we tested

our predictive models (since we used historical data and embeddings from the 1840s to learn kernel

parameters by treating the 1850s as a validation decade), and those in 1990s were the last.

Before we discuss more details about training our probabilistic models, we first turn to how we

formally define the co-occurrence of adjective a with noun n∗ as we have hand-waved this phrase in all

previous chapters. Indeed, there are multiple ways to formally define how a and n∗ co-occur, and one

20
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straightforward account is their first raw co-occurrence (of the format “a ADJ n∗ NOUN”) in the EngAll

corpus as marked by POS tags. A potential drawback of this definition is susceptibility to noise in the

corpus, and to deal with this, we applied a threshold T to the number of co-occurrences between a

and n∗ in decade t for them to have formally co-occurred in decade t. In all our experiments, we used

the threshold value T = 2 with the reason for this seemingly-arbitrary value being that if a and n∗

co-occur at least twice, the chances of noise generating these observations is probably lower than just

one co-occurrence, while we also do not want to ignore would-be novel pairs by applying a very high

threshold. Given our threshold T , we say that adjective a and noun n∗ co-occur for the first time (and

are an emergent pair) in decade t if and only if the following two criteria are met:

1. a and n∗ co-occur at least T = 2 times during decade t, and

2. during any decade t′ < t, a and n∗ never co-occurred at least T = 2 times.

It’s worth noting that this definition of co-occurrence, a particular noun n∗ may have “emerged” in

different decades with respect to choice of adjective set. For instance, the first co-occurrence of n∗ with

any adjective a ∈ A may have been in decade t, in which case n∗ ∈ E(t)
A , yet the first co-occurrence of

n∗ with any adjective a′ ∈ A′ (i.e., a different adjective set) may have been in some later decade such

as t + ∆, in which case n∗ /∈ E(t)
A′ .

Now that we have described what it means for an adjective and noun to co-occur, we can return

to discussing kernel parameter optimization. We learned individual kernel parameters for each of the

exemplar and prototype models during each decade (while the progenitor model simply borrowed the

first kernel parameter learned by our prototype likelihood) using the Nelder-Mead simplex method [35]

and the exact training procedure is described in Chapter 3.4. When predicting novel adjective-noun

pairs in decade t + ∆, we first learned the kernel parameters through a training phase: we predicted

the observed pairs that first emerged in decade t using the historical data up to decade t −∆ and the

diachronic Word2Vec embeddings in decade t. These kernel parameters were then used to predict novel

adjective-noun pairs that emerged in decade t+∆, and the models were augmented to now observe novel

pairings in decade t.

Given a noun n∗, each model’s output was a categorical distribution p (a|n∗)(t+∆)
over adjectives inA.

The adjectives were rank-ordered based on posterior probability and we report aggregate precision scores

for all predictions that a model made in decade t + ∆. This means that if n∗ formed m novel adjective-

noun pairs in decade t + ∆, we considered the top m adjectives from our rank-ordering. However, since

we’re only concerned with predicting novel adjective-noun pairs that first emerge in decade t + ∆, we

ignored adjectives a ∈ A which have paired with n∗ at any time up to and including t. Given this
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criterion, we rewrite the posterior probability p(a|n∗)(t+∆) that we formulated in Chapter 3.1 such that

it ignores previously-attested adjective-noun pairs:

p (a|n∗)(t+∆) ∝ p(n∗|a)(t)p (a)
(t) × 1

[
n /∈ {n}(≤t)a

]

where {n}(≤t)a uses similar notation that we introduced in Chapter 3 and gives all nouns that co-occurred

with a in at least one decade up to t.

Furthermore, we evaluated our predictive models in two ways. First, for a given noun n∗, we consid-

ered the set of true positives to be adjectives in A that first co-occurred with n∗ specifically in decade

t + ∆. This means if some adjective a first appeared with n∗ in some future decade t′ > t + ∆ and the

model predicted a, it was counted as an incorrect prediction. As we learned kernel parameters for the

exemplar, prototype, and progenitor models by maximizing the predictive accuracy on attested pairings

specifically in the following decade, this is an obvious choice for set of true positives. Second, it doesn’t

seem entirely correct to penalize the model’s predictive performance because it predicted some adjective

that co-occurred with n∗ eventually, even though not exactly in decade t + ∆. For this reason, we relax

the set of true positives to include any adjective that first co-occurred with n∗ in any future decade

t′ > t. We report model predictive accuracy using both sets of true positives, however we didn’t learn a

separate set of kernel parameters for the latter set. In the rest of this chapter, we use these experimental

protocols described in this section and report our results.

5.2 Predictive model performance

We tested all models and evaluated their predictive accuracy using the methodology described in the

previous section. Aggregate precision accuracy (when considering emergent adjective-noun pairs in

decade t+ ∆ only) is reported in Figure 5.1. The rank-ordering of the models remains consistent across

the Frq-200, Rand-200, and Syn-65 adjective sets. The exemplar model obtained the highest precision

accuracy and was closely followed by the 10-NN model. The difference between the exemplar and 10-NN

model is almost negligible. This makes sense as the exemplar likelihood is essentially a Gaussian mixture

model in semantic space and the kernel parameter controls how fast the similarity function decays, and

so the exemplar model can pick how many neighbors to pay attention to, whereas any k-NN model is

more stringent since k is fixed. Figure 5.3 provides a concrete example of chaining and the exemplar

model. The 1-NN model was significantly worse than all other models, including the type-based prior.

The prototype model followed closely behind the exemplar and k-NN models. The progenitor model,
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(a) Frq-200 (b) Rand-200

(c) Syn-65

Figure 5.1: Aggregate precision accuracy for all models (including k-NN from k = 1 to k = 10) across
all decades on each of the three adjectives sets.

a variant of the prototype model with “static” prototypes determined in the base decade t0, became

considerably worse than the prototype model with time. During later decades, the progenitor model

performed even worse than the baseline. This relationship between the prototype and progenitor models

that we observe here indicates that the context distribution of a affects which nouns n will pair with a

in decade t + ∆ to a great extent. This evidence suggests that adjective prototype representations are

constantly changing and need to adapt to changes in semantics, and that if the prototype model is the

closest underpinning of adjective extension, then {n}(t)a largely influences which nouns adjective a will

extend to. Model predictive accuracy is also reported on a per-decade basis in Figure 5.2 and reflects

the same aggregate trend from Figure 5.1. These results are consistent across all three adjective sets We

also report some examples of model predictions in Table 5.1.

We also report accuracy where we relax the set of true positives for a given noun n∗ to be all

adjectives in A that formed novel adjective-noun pairs with n∗ in any future decade t′ > t (see plots on

the right-hand side of Figure 5.2). The rank-ordering for the top three performing models (exemplar,

prototype, and 10-NN) wasn’t always consistent between adjective sets, however the gap is quite small,

suggesting all three are equally powerful for this method of evaluation. The same trend of the progenitor,
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(a) Frq-200

(b) Rand-200

(c) Syn-65

Figure 5.2: Model predictive accuracy on the Frq-200, Rand-200, and Syn-65 adjective sets. Left:
Predictive accuracy when only novel adjective-noun pairs in the following decade are considered. Right:
Predictive accuracy when all future adjective extension are considered. See Appendix B for an argument
as to why the curves generally decrease with time.

baseline, and 1-NN model being the worst three performers followed. When evaluating our models this

way, we borrowed the same kernel parameters as when only considering novel adjective-noun pairs in

decade t + ∆. This is possibly why the exemplar model doesn’t always outperform the 10-NN model in

this case, and we suspect a new set of learned kernel parameters would only increase precision accuracy
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noun & decade cigarette, 1880s
new adjectives better, modern, several, excessive, American, social

baseline prediction original, particular, English, natural, perfect, modern (1/6)
exemplar prediction black, red, English, pool, original, particular (0/6)
prototype prediction red, black, dry, warm, cold, English (0/6)

10-NN prediction original, warm, particular, red, English, dry (0/6)

noun & decade cigarette, 1920s
new adjectives different, odd, worn, scattered, illegal, wrong

baseline prediction natural, different , sufficient, extraordinary, moral, mental (1/6)
exemplar prediction different , natural, warm, sufficient, solid, inner (1/6)
prototype prediction warm, different , top, natural, solid, circular (1/6)

10-NN prediction natural, top, warm, different , sufficient, conventional (1/6)

noun & decade alcohol, 1920s
new adjectives female, analogous, red, bitter, marked, illegal

baseline prediction perfect, extraordinary, moral, physical, western, christian (0/6)
exemplar prediction red , moral, artificial, dense, perfect, marked (2/6)
prototype prediction artificial, perfect, marked , red , physical, moral (2/6)

10-NN prediction red , moral, dense, perfect, analogous, artificial (2/6)

noun & decade discrimination, 1940s
new adjectives female, south, predictive, silent, dietary, deplorable

baseline prediction roman, solid, brilliant, unknown, silent , female (2/6)
exemplar prediction female, roman, male, silent , solid, passionate (2/6)
prototype prediction roman, male, female, exaggerated, bourgeois, everyday (1/6)

10-NN prediction female, male, exaggerated, energetic, isolated, roman (1/6)

noun & decade Vietnam, 1960s
new adjectives western, tropical, eastern, colonial, particular, more, top, poor, American

baseline prediction same, more, great, particular , American , different, natural, human, English (3/9)
exemplar prediction western , eastern , more, particular , great, colonial , inner, same, poor (6/9)
prototype prediction great, same, western , more, American , eastern , particular , European, French

(5/9)
10-NN prediction western , eastern , more, tropical , colonial , great, better, inner, particular (6/9)

Table 5.1: Examples of model predictions on the Frq-200 adjective set. Adjectives in bold font
indicate true positives retrieved by models. For each of the model predictions, the adjectives are ordered
in decreasing order of predicted posterior probability. We specifically include predictions for nouns
cigarette, alcohol, and Vietnam as the adjectives they first pair in various decades reflect sentiment (e.g.,
social cigarette in the 1880s versus wrong cigarette nearly half a century later) or historic events (e.g.,
illegal alcohol due to prohibition, American Vietnam due to the Vietnam war).

by a small amount.

Predictive accuracy generally decreased with time both when we considered novel adjectives that

emerged with n∗ exactly in decade t + ∆ and any later date. We go into detail about this phenomenon

in Appendix B and show how the number of novel adjective-noun left for each model to predict decreased
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across all three adjective sets as time increases, and this made the predictive task harder.

Another interesting finding is falsely-reported adjective-noun pairings as a result of misidentified

extractions. For instance, Table 5.1 shows how more co-occurred with Vietnam in a novel adjective-

noun pairing, yet more should not be treated as an adjective. In fact, more accounts for roughly 3.5% of

all adjective-noun co-occurrences between adjectives in Frq-200 and all nouns in WordNet—a significant

amount since a uniform distribution of co-occurrences over Frq-200 would include more just 0.5% of

all co-occurrences. This reveals how POS tags can incorrectly factor into our data since more is treated

as an adjective both by WordNet and the Google Books corpus.

Figure 5.3: An illustration of chaining and more specifically the exemplar model. Both wrong and
troubled compete to attract the noun slavery in the 1880s, prior to which slavery did not pair with either
adjective. The exemplar model essentially forms a kernel density estimate for each adjective, shown here
by the red contours for wrong and blue for troubled. Several nouns that helped to form each likelihood
are also illustrated along with the decade in which they first paired with their respective adjectives
(nouns labeled in purple previously paired with both adjectives). It’s more likely that wrong will attract
slavery than troubled will as the density function of the former assigns a higher probability to slavery,
and indeed this gave rise to a novel adjective-noun pair in the 1880s: wrong slavery. We applied Principal
Components Analysis to diachronic Word2Vec embeddings from the 1870s to obtain this figure.
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5.3 Optimal k-nearest neighbors model

Our results from Chapter 5.2 led us to believe that chaining is a step in the right direction towards

capturing the generative cognitive mechanisms that underlie adjective extension, and also that semantic

neighborhood is an important contributing factor since the exemplar and 10-NN models achieved the

highest predictive accuracy. We now explore roughly how large this semantic neighborhood is in terms of

neighboring nouns. Despite that the 10-NN model largely outperformed the 1-NN model, it’s clear that

model performance will start to decrease after some value of k. This is because in a type-based k-NN

setting (such as ours), model performance converges to the baseline as k →
∣∣∣N (t)
A

∣∣∣ (i.e., a type-based

k-NN model with k =
∣∣∣N (t)
A

∣∣∣ is the baseline by definition.

Furthermore, one intuition of the kernel parameter in the exemplar model (which we deem a soft-

version of k-NN) is how many neighbors are “paid attention to” as the kernel parameter effectively

controls the steepness of the similarity function. To investigate how many neighbors are relevant to

predicting the adjectives that a noun n∗ will later pair with, we performed a grid search to find the

optimal k that yielded the greatest predictive accuracy. We found that k ∈ [30, 60] generally yielded

the best performance. Figure 5.4 illustrates the distribution of top-performing k values under both

evaluation modes. Across all decades, the best performing k-NN model never exceeded 10-NN by more

than 0.03 precision accuracy.

(a) Frq-200 (b) Rand-200 (c) Syn-65

Figure 5.4: The distribution of optimal k values in a k-NN predictive model (based on precision) over
all decades and across the three adjective sets when searching with step size 5.

5.4 The cognitive cost of adjective extension

Linguists have claimed that semantic chaining largely explains language change. We make the same

hypothesis, as chaining facilitates extensions that are the cognitively “cheap” and this conforms to
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(a) Exemplar model (b) Prototype model

Figure 5.5: The “cognitive cost” of adjective extension for both the exemplar and prototype models
on the Frq-200 adjective set. The true cost (light blue) is an empirical measurement based on each
adjective’s novel noun pairings in decade t over all a ∈ A. The randomized cost (dark blue) is an average
of 25 simulations where, if adjective a had actually formed m novel adjective-noun pairs in decade t+∆,
then those m nouns were chosen randomly out of the set of nouns a hadn’t previously paired with. Error
bars are omitted here as any confidence interval around the mean random cost is too small to see.

the general principle of cognitive economy, which is the tendency for cognitive processes to minimize

processing effort and resources. However, it’s not clear how we can find empirical evidence that supports

or rejects our hypothesis, especially since the underlying mechanism which explains adjective extension

is not well-understood at neither the cognitive nor neural levels.

As our predictive models shed some light on the generative processes at play, we tried to measure

the “cognitive cost” of adjective extension through our exemplar and prototype models versus a random

process of extension, and this showed the extent to which our claim about adjective extension acting

in accordance with the principle of cognitive economy is true. Note that we use the term “cognitive

cost” loosely as it’s not well-defined. As chaining primarily operates in a semantic space, we computed

costs based on how far in that semantic space an adjective needed to extend to include a new noun.

With respect to the exemplar model, we defined the cost of extending adjective a to noun n∗ (which a

previously never paired with) in decade t + ∆ as

cost(a, n∗) =
1∣∣∣{n}(t)a

∣∣∣
∑

n∈{n}(t)a

d
(
~v

(t)
n∗ , ~v

(t)
n

)
.
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Similarly, we defined the same cost with respect to the prototype model as

cost(a, n∗) = d
(
~v

(t)
n∗ , ~p

(t)
a

)
.

This way of measuring cost reflects how distances in semantic space grow with concepts that are more

and more unrelated (in the distributional sense), a direct consequence of the learning procedure in

Word2Vec. Results from our experiment are reported in Figure 5.5 and they suggest that adjective

extension is by no means random, i.e., when an adjective extended to a noun, the distribution over

nouns is far from uniform. While we acknowledge that our notion of “cheapness” is biased since its

based solely on Word2Vec embeddings, we report our results with p < 0.01.



Chapter 6

Discussion

This thesis has provided a computational formulation of adjective extension, a large dataset of historical

adjective-noun pairings along with their usages throughout the last 150 years, and an empirical evaluation

of probabilistic models that recapitulate the extension of adjectives based on the idea of semantic chain-

ing. When evaluating the predictive accuracy of our models, the exemplar model tends to outperform

all others, followed closely by the 10-NN and prototype models. These models performed considerably

better than the type-based prior that extends adjectives based solely on category size. This result was

consistent throughout almost all decades into which we attempted to predict novel adjective-noun pairs,

and across our three adjective sets.

Our evidence supports our hypothesis that semantic neighborhood density influences which novel

adjective-noun pairs will emerge albeit not too strongly as our prototype model is able to perform nearly

as well as our exemplar and nearest neighbors models in terms of predictive accuracy. The prototype

model, unlike the exemplar and nearest neighbors models, does not account for semantic neighborhood

density. Therefore, as chaining can take various forms, our results do not illustrate which mechanism of

adjective extension is necessarily preferred, if any. However, these results do suggest that if a prototype

model is central to adjective extension, then the prototype representations are constantly adapting

to novel contexts since our progenitor models worsened with time as compared with our prototype

model. Our work builds on previous efforts that suggests chaining algorithms are the computational

underpinnings for language change in domains such as the extension of word senses, container names,

and numeral classifiers. This thesis investigated whether those same chaining mechanisms apply to

adjective extension, and we found that the way in which language changes with respect to adjective-

noun composition generally follows the same principles uncovered in those other domains. Together with

30
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previous work, our results imply that chaining plays a crucial role in explaining how language changes

over time.

Our conclusion matches our hypothesis for the most part, yet our approach still has some limita-

tions that are worth discussing and potentially addressing in future work. First, we specifically used a

type-based approach when computing both the prior distribution and likelihood in our computational

framework, but it’s worth noting that both type- and token-based approaches can be employed towards

categorization tasks such as ours. The latter counts token frequency rather than binary co-occurrence

counts. In fact, token-based counts are generally more common with regards to cognitive modelling,

but it’s not clear which approach is better, and some work in the psychology literature has pointed

towards type-based representations as being superior [43] while others have hinted token-based repre-

sentations [4, 38] are better. Indeed, if token-based counts are more informative of adjective categories,

then this would largely affect our predictive models. Second, chaining is primarily based on the notion

of semantic similarity. One drawback of this general setup is that although chaining mechanisms may

retrieve other stimuli that are similar to our query, plausibility is still ignored. That is, our implemen-

tation of chaining does not explicitly “perform a check” as to whether the adjective predictions for a

given query noun give sensible pairings. This is perhaps why our models still make predictions such as

solid discrimination (see Table 5.1) which is nonsensical with respect to any known sense of the adjective

solid, and in fact never became attested. As adjectives are able to accumulate novel senses and uses,

the set of feasible nouns they can pair with will vary, thus there is no clear solution to this problem.

At present, we acknowledge this limitation but also suspect any potential solution that can disregard

nonsensical composition will yield a significant increase in predictive accuracy.

As our work builds certain inductive biases into our predictive models based on what we know about

chaining and category growth, future avenues should explore richer models for temporal prediction with

a stronger and more informative set of biases. Here, we a discuss a few of these directions. First, the

semantic representations that our models leverage largely impact their performance and predictions. In

this thesis, we used Word2Vec, which captures the distributional semantics of words. However, the way

we choose to represent semantics need not rely on the distributional hypothesis, and the optimal choice of

semantic representation may be task-specific. A variant of Word2Vec which has been lauded for better

overall representations is GloVe [42], based on global co-occurrence statistics, and non-distributional

representations which may further contribute to a more informative likelihood function include, and

are not limited to, binary sparse representations of words [11]. Next, just as we formulated semantic

chaining in computational terms, we can also leverage other hypotheses about language change and

incorporate them into our predictive models as inductive biases. For instance, the law of parallel change
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states that related words tends to change in similar ways [25], and has already been investigated in

other domains of language change [64]. As nouns can often be described by multiple adjectives that

ultimately communicate the same meaning, the law of parallel change may also help guide our predictive

models in adjective extension. Finally, as studies have shown that the visual world captures useful

information about sensible adjective-noun pairings, can we incorporate a visual component into our

predictive models? In the past, studies that have taken a cross-modal approach to adjective-noun

composition have targeted adjectives that are relatively concrete, such as blue and wooden, and thus we

face the greater challenge of making cross-modal models deal with abstract adjectives in the lexicon—if

a cross-modal approach can offer any benefits at all.

To conclude, this thesis provides a starting point for exploring the composition of adjectives and nouns

through the lens of historical language change and probabilistic algorithms. Our approach provides

important clues to the generative cognitive mechanisms that may underlie word usage extension and

should stimulate future work on how human cognition, coupled with external factors such as changes in

culture and technological advances, shape innovate language use.
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Appendix A

Adjective Sets

Here we present all adjectives used in our analysis, namely from the Frq-200, Rand-200, and Syn-65

adjective sets. Adjectives in bold font are included in at least two of the three adjective sets. The first

table gives the adjectives that constitute Syn-65, and we note two important details about this set.

First, the set of synaesthetic adjectives proposed by Joseph Williams [62] actually contains 64 unique

adjectives as light is repeated. Second, the Google Books corpus ties all tokens to words in WordNet,

and since acrid, aspre, and tart (all synaesthetic adjectives) are not WordNet adjectives, we could not

reliably measure their uses through time. For this reason, we excluded these from Syn-65 and have 61

adjectives in total, given here.

Syn-65

acute cloying dulcet grave light quiet sour

austere coarse dull hard little rough strident

big cold eager harsh loud shallow sweet

bitter cool empty heavy low sharp thick

bland crisp even high mellow shrill thin

bright dark faint hollow mild small vivid

brilliant deep fat hot piquant smart warm

brisk dim flat keen poignant smooth

clear dry full level pungent soft

Next, we present the Frq-200 and Rand-200 adjective sets. Since these two sets draw adjectives

from identical clusters, we present the two adjective sets so we can easily compare adjectives drawn from

same cluster between the two sets. See Chapter 4.2 for more details on how these sets were generated.
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cluster 1 of 20 cluster 2 of 20 cluster 3 of 20

Frq-200 Rand-200 Frq-200 Rand-200 Frq-200 Rand-200

casual amiable bare contorted sufficient alterable

eccentric chatty curly dainty analogous contemporaneous

energetic communicative eyed furrowed equal reconcilable

entertaining fiery female hale calculable chargeable

enthusiastic fluent feminine horny receivable distributive

forgiving guileless horny limber derived accessary

glib lovable male sage binding lineal

intelligent loyal naked skeletal indirect allotted

passionate patriotic pale smoky undivided noncommercial

polite unorthodox skeletal swaggering eligible classifiable

cluster 4 of 20 cluster 5 of 20 cluster 6 of 20

Frq-200 Rand-200 Frq-200 Rand-200 Frq-200 Rand-200

cold chilly algebraic binary blind intact

dense cold conventional biotic impossible irretrievable

dry drizzling discrete crystalline incomplete malfunctioning

eastern encroaching electrical fusible isolated obscure

hardy fertile microscopic geometric pregnant overlooked

northern funicular multicellular interfacial scarce powerless

south homeward predictive modular silent unmarked

tropical littoral rotational perceptual submerged unstable

warm unincorporated thermal refrigerant unknown unstudied

western watery volcanic stratified unrelated valueless

cluster 7 of 20 cluster 8 of 20 cluster 9 of 20

Frq-200 Rand-200 Frq-200 Rand-200 Frq-200 Rand-200

appropriate complex alien antipodal everyday approaching

balanced delighted colonial congruous firm descending

basic foolproof divine dynastic more fiddling

better grateful heavenly hierarchical original former

different intensive human invariable particular intensifying

natural knowledgeable inner overt physical probable

positive livable medieval paschal preliminary rental

solid realistic modern protestant same reverse

superior structured moral recessive several sliding

sure varied philosophical sacred top thirteenth
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cluster 10 of 20 cluster 11 of 20 cluster 12 of 20

Frq-200 Rand-200 Frq-200 Rand-200 Frq-200 Rand-200

allergic carcinogenic black ceramic bent hysterical

antibiotic coagulate circular cyclopean bourgeois inattentive

artificial colorless concave fireproof corrupt irreligious

dietary milky crimson legible disreputable lunatic

fibrous nonfat distinctive rectilinear domineering opportunist

liquid pulpy fluorescent sleek evil parochial

mucous scented incised tucked fascist possessive

powdery spongy red umber jugular resentful

raw steamed tubular unglazed pious uncongenial

synthetic vanilla white Venetian warlike unengaged

cluster 13 of 20 cluster 14 of 20 cluster 15 of 20

Frq-200 Rand-200 Frq-200 Rand-200 Frq-200 Rand-200

bitter brokenhearted affected bottomed abusive appalling

debilitating confused buried credited deplorable bias

emotional delirious distributed jammed exaggerated capricious

hopeless disturbed given owned excessive exorbitant

odd odd left rose illegal hostile

poor patchy marked scattered simplistic imprecise

troubled regretful modified settled undue inelegant

unhappy thirsty scattered shattered unintentional innocuous

weird unhappy used surrounded unproductive unbalanced

worst untidy worn sworn wrong unsound

cluster 16 of 20 cluster 17 of 20 cluster 18 of 20

Frq-200 Rand-200 Frq-200 Rand-200 Frq-200 Rand-200

adrenal cesarean American Arabian brilliant adored

alveolar endoscopic Asian Catalan conspicuous commanding

bivariate hemorrhagic Christian Chinese ecstatic fantastic

cardiovascular hyoid Dutch Cornish extraordinary favorite

clinical intervertebral English Dutch fitting gallant

diagnostic lobular European Haitian great halcyon

neural monovalent French Hungarian incomparable loved

peritoneal normotensive Roman Kurdish perfect superb

spinal valved Serbian Taiwanese singular tragic

ulcerative vesicular Spanish Thai startling undefeated
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cluster 19 of 20 cluster 20 of 20

Frq-200 Rand-200 Frq-200 Rand-200

budgetary agrarian aesthetic clarion

civil catechetical artistic contemporary

criminal clandestine classical darkling

marital constitutional clever dulcet

mental curricular colloquial earthy

national hourly dreamy falsetto

nuclear intramural hilarious longhand

parental qualitative intimate ponderous

regional recreational narrative soothing

social sectional rhetorical wry
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Why do the Curves go down?

As argued in Chapter 5, the predictive accuracy generally decreases across all models with time. At

first glance, this seems counter-intuitive since predicting for later decades means the model has more

observations to base its predictions off. However, as Figure B.1 shows, the average number of nouns to

predict in each decade goes down with time. This general trend applies to both sets of true positives:

only adjectives that first co-occur with a given noun n∗ in decade t + ∆, and also in any future decade.

Consequently, precision scores generally decrease the chance of getting at least one prediction correct

when the number of predictions is small. This likely explains why, as the average number of adjective

predictions to make for each noun drops below 0.5 after the 1970s, the predictive accuracy of the

models starts to drop rapidly. This trend is also reflected in the JSD curves (see Appendix C), as fewer

predictions implies the empirical distribution becomes more peaked.

(a) In decade t + ∆ (b) In any future decade t′ > t

Figure B.1: The average number of novel adjective-noun pairs left for each model to predict across all
times and adjective sets. This value is computed across all nouns for which a predictive model makes
adjective predictions.

44



Appendix C

The Empirical Distribution

To further study model performance, we also examined how the model’s predicted posterior distribution

p(a|n∗)(t+∆) aligns with the empirical distribution of adjective-noun co-occurrences. We define the

empirical posterior probability for that adjective a will co-occur with noun n∗ as the token-based number

of co-occurrences between a and n∗ only if they first co-occur at time t + ∆:

pempirical (a|n∗)(t+∆) ∝ count(n∗, a, t + ∆)× 1 [count(n∗, a, t + ∆) ≥ T ]︸ ︷︷ ︸
apply threshold to count

× 1

[
n∗ /∈ {n}(≤t)a

]
︸ ︷︷ ︸

disregard if previously attested

.

Here, count(n∗, a, t + ∆) is the (token-based) number of co-occurrences between a and n∗ at time

t + ∆. In the above expression, we multiply the token-based count by 1 [count(n∗, a, t + ∆) ≥ 2] to

threshold the number of co-occurrences at 2 (see Chapter 5.1 for more details about thresholding), and

by 1

[
n∗ /∈ {n}(≤t)a

]
to ignore previously-attested adjective-noun pairs just as we do with the predicted

posterior probability. We then train and evaluate our predictive models just as before, except we

evaluate the expected Jensen-Shannon divergence (JSD) between the predicted and empirical posterior

distributions over all nouns in N (t)
A . We also learned kernel parameters for the exemplar and prototype

models specific to this task by optimizing JSD.

Figure C.1 reports the JSD between the predicted and empirical posterior distributions in each

decade. In general, we see some noticeable differences in the rank-ordering of models here as compared

with predictive accuracy. For instance, the 1-NN model obtains a lower JSD with the empirical posterior

distribution much more frequently than the 10-NN model does on both the Rand-200 and Syn-65

adjective sets, even though the predictive accuracy suggests 10-NN better captures adjective extension.

It’s not clear why this occurs, especially since the rank-ordering agrees more with the results from
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predictive accuracy on the Frq-200 adjective set.
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(a) Frq-200

(b) Rand-200

(c) Syn-65

Figure C.1: Results from training and evaluating our predictive models with JSD across all three
adjective sets. Left: The JSD between the predicted and empirical posterior distributions across all
models and decades. Right: Aggregate JSD for all models (including k-NN from k = 1 to k = 10)
across models and decades.



Appendix D

Learning via MAP Estimates

In Chapter 3.4, we described how to learn kernel parameters for each of our predictive models by

maximizing precision. An alternative approach is to take a maximum a posteriori (MAP) estimate

where we maximize the posterior probability of observing the attested adjective-noun pairs.

Let (a1, n1), (a2, n2), . . . , (aL, nL) be the novel adjective-noun pairings at time t. Given our predictive

models, our MAP estimate of the kernel parameter h(t) follows

ĥ
(t)
MAP = arg max

h

L∏
i=1

p(ai, h|ni)
(t)

= arg max
h

L∏
i=1

p(ni|ai, h)(t−∆)p(ai, h)(t−∆)

where the likelihood p(ni|ai, h)(t−∆) is computed via the exemplar or prototype likelihoods, and the

prior p(ai, h)(t−∆) is described in Chapter 3.2. Note that this prior is only dependent ai and not h.

We tried this approach and evaluated our predictive models based on precision. As the results

in Figure E.1 illustrate, a MAP estimate of kernel values is inferior to simply maximizing precision.

The charts below report results for the exemplar and prototype models, and these results hold across all

adjective sets. It’s interesting how the drop in accuracy from precision- to MAP-based kernel parameters

is affects the exemplar model more than it does the prototype model. As the next Appendix section

shows, the kernel parameter values are also more similar in the prototype model than the exemplar

model when comparing both methods for learning.
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(a) Frq-200 (b) Rand-200

(c) Syn-65 (d) Aggregate scores across all decades

Figure D.1: A comparison of the exemplar and prototype models’ predictive accuracy across all decades
when the kernel parameter is learned via maximizing precision versus a MAP estimate on (a) Frq-200,
(b) Rand-200, (c) Syn-65. Plot (d) gives the aggregate accuracy across all decades for each of the three
adjective sets, within which the unstriped and striped bars correspond to kernel parameters learned
through maximizing precision and a MAP estimate, respectively.



Appendix E

Kernel Parameters

We provide all kernel parameters that we used in our exemplar and prototype predictive models across

all adjective sets and training objectives in the table below. Note that the left-hand column, t, gives

the decade for which each kernel parameter was used to predict novel adjective-noun pairs. That is, the

first row of the table where t = 1860s gives kernel parameters used to make predictions in the 1860s,

but were learned based on adjective-noun pairs that emerged in the 1850s.

Frq-200

precision JSD MAP

used to predict (t) exemplar prototype exemplar prototype exemplar prototype

1860s 0.1143 0.0500 0.0754 0.0308 0.5659 0.1266

1870s 0.1050 0.0589 0.0700 0.0295 0.5757 0.1191

1880s 0.1050 0.0600 0.0698 0.0293 0.5769 0.1331

1890s 0.1148 0.0648 0.0727 0.0300 0.6016 0.1468

1900s 0.1237 0.0650 0.0729 0.0293 0.6023 0.1340

1910s 0.1150 0.0672 0.0693 0.0301 0.6133 0.1306

1920s 0.1251 0.0576 0.0684 0.0296 0.6066 0.1563

1930s 0.1016 0.0596 0.0637 0.0283 0.6186 0.1729

1940s 0.1055 0.0550 0.0653 0.0286 0.6183 0.1586

1950s 0.0986 0.0539 0.0619 0.0300 0.6404 0.1593

1960s 0.1100 0.0621 0.0563 0.0291 0.6062 0.1113

1970s 0.1050 0.0621 0.0548 0.0283 0.6149 0.1189

1980s 0.1157 0.0625 0.0468 0.0260 0.6014 0.1024

1990s 0.0850 0.0850 0.0556 0.0254 0.6283 0.1020
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Rand-200

precision JSD MAP

used to predict (t) exemplar prototype exemplar prototype exemplar prototype

1860s 0.1211 0.0570 0.0647 0.0300 0.5017 0.1147

1870s 0.1250 0.0500 0.0533 0.0291 0.5124 0.1043

1880s 0.1150 0.0550 0.0637 0.0278 0.5105 0.1055

1890s 0.1250 0.0549 0.0578 0.0285 0.5159 0.1106

1900s 0.1000 0.0543 0.0548 0.0286 0.5090 0.1070

1910s 0.1300 0.0512 0.0668 0.0301 0.5230 0.0963

1920s 0.1100 0.0602 0.0563 0.0279 0.5263 0.0965

1930s 0.1300 0.0563 0.0500 0.0273 0.5382 0.0876

1940s 0.1188 0.0500 0.0445 0.0278 0.5273 0.0877

1950s 0.1050 0.0609 0.0483 0.0278 0.5134 0.0869

1960s 0.1050 0.0500 0.0485 0.0271 0.5271 0.0908

1970s 0.1050 0.0450 0.0457 0.0241 0.5309 0.0777

1980s 0.0700 0.0550 0.0360 0.0243 0.5464 0.0775

1990s 0.1300 0.0250 0.0452 0.0207 0.5214 0.0801

Syn-65

precision JSD MAP

used to predict (t) exemplar prototype exemplar prototype exemplar prototype

1860s 0.1154 0.0463 0.0736 0.0251 0.6169 0.1172

1870s 0.1250 0.0650 0.0684 0.0251 0.6385 0.1236

1880s 0.1050 0.0450 0.0569 0.0223 0.6703 0.1484

1890s 0.1033 0.0504 0.0640 0.0224 0.6852 0.1498

1900s 0.1026 0.0650 0.0583 0.0212 0.6984 0.1711

1910s 0.1450 0.0850 0.0507 0.0205 0.7168 0.1824

1920s 0.1414 0.0950 0.0581 0.0200 0.7779 0.1747

1930s 0.1641 0.0742 0.0354 0.0181 0.7650 0.1620

1940s 0.1500 0.0850 0.0419 0.0144 0.7529 0.1561

1950s 0.1250 0.0600 0.0410 0.0150 0.7507 0.1597

1960s 0.1550 0.0600 0.0104 0.0125 0.7013 0.1056

1970s 0.1203 0.0500 0.0249 0.0102 0.7989 0.1313

1980s 0.0800 0.0350 0.0356 0.0103 0.8177 0.1340

1990s 0.1000 0.0350 0.0509 0.0104 1.2439 0.6566
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The kernel parameters listed in the above tables are also illustrated in the following plots.

(a) Exemplar model (precision) (b) Prototype model (precision)

(c) Exemplar model (JSD) (d) Prototype model (JSD)

(e) Exemplar model (MAP) (f) Prototype model (MAP)

Figure E.1: The kernel parameters learned by the exemplar (left) and prototype (right) models with
precision-based, and JSD-based, and MAP objectives across all adjective sets as a function of time.
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